
Classifying Pedagogical Material to Improve Adoption of Parallel and Distributed

Computing Topics

Alec Goncharow, Anna Boekelheide, Matthew Mcquaigue, David Burlinson, Erik Saule, Kalpathi Subramanian

Computer Science

UNC Charlotte

Charlotte, NC, USA

Email: {agoncha1,aboekelh,mmcquaig,dburlins,esaule,krs}@uncc.edu

Jamie Payton

Computer and Information Sciences

Temple University

Philadelphia, PA, USA

Email: payton@temple.edu

Abstract—The NSF/IEEE-TCPP Parallel and Distributed
Computing curriculum guidelines released in 2012 (PDC12) is
an effort to bring more parallel computing education to early
computer science courses. It has been moderately successful,
with the inclusion of some PDC topics in the ACM/IEEE
Computer Science curriculum guidelines in 2013 (CS13) and
some coverage of topics in early CS courses in some universities
in the U.S. and around the world. A reason often cited for the
lack of a broader adoption is the difficulty for instructors who
are not already knowledgable in PDC topics to learn how to
teach those topics and align their learning objectives with early
CS courses.

There have been attempts at bringing textbook chapters,
lecture slides, assignments, and demos to the hands of the
instructors of early CS classes. However, the effort required to
plow through all the available materials and figure out what is
relevant to a particular class is daunting. This paper argues that
classifying pedagogical materials against the CS13 guidelines
and the PDC12 guidelines can provide the means necessary to
reduce the burden of adoption for instructors.

In this paper, we present CAR-CS, a system that can be
used to categorize pedagogical materials according to well-
known and established curricular guidelines and show that
CAR-CS can be leveraged 1) by PDC experts to identify topics
for which pedagogical material does not exist and that should
be developed, 2) by instructors of early CS courses to find
materials that are similar to the one that they use but that
also cover PDC topics, 3) by instructors to check the topics
that a course currently covers and those it does not cover.

Keywords-PDC curriculum; exemplar; classification; adop-
tion of PDC in early CS courses

I. INTRODUCTION

Parallel and Distributed Computing (PDC) has risen as a

topic since Dennard scaling ended around 2005 and since

Internet systems have become ubiquitous. PDC, however

has still not reached most of the classrooms. To remedy

this problem, NSF/IEEE-TCPP curriculum guidelines were

developed and published in 2012 [1], and a new iteration of

these guidelines are expected to be finalized in 2019. Rather

than simply proposing to add a PDC course in curriculum

with low likelihood of adoption, a more promising strategy

is to integrate PDC topics all across the undergraduate

curriculum, from early CS courses such as programming and

data structures to more advanced courses such as operating

systems, and computer architecture. Further, the importance

of PDC in Computer Science curriculum was well received

and a joint ACM/IEEE group integrated PDC topics in

their 2013 Computer Science curriculum guidelines [2] as

a dedicated area, but also spread in multiple places in the

guidelines.

While at a national level, there is an understanding that

PDC topics are of importance, the practical integration of

these topics in courses has been slow. Multiple strategies

to help with the adoption of PDC integrated in curricula

have been deployed with moderate success. Workshops to

train instructors are effective at adjusting some courses,

but the strategy is not scalable. Some books have been

written to explain how to teach these topics to provide some

materials [3], [4], but they take time to write, tend to be very

specific, and need to be well publicized to reach a wide

audience.

Most instructors of CS1/CS2 are somewhat unaware of

Parallel and Distributed Computing topics, and typially ask

“What topics should I adopt in my class?”, and “How do I

adopt them in an already packed class?” A set of well de-

veloped learning materials (assignments, videos, textbooks,

course descriptions, and so on) can provide a scalable answer

to such questions. While there are some materials online [5],

[6], the questions “How do I find them?” and “Which ones

are relevant for me?” remain.

This paper proposes a way to solve this problem by

explicitly classifying pedagogical materials (assignments,

lecture slides, exams, video lectures, book chapters, etc.)



against well accepted content ontologies. We classify learn-

ing materials against two established ontologies, the 2013

ACM/IEEE CS curriculum guidelines [2], and the 2012

NSF/IEEE-TCPP curriculum guidelines for Parallel and Dis-

tributed Computing [1]. We have developed CAR-CS, a pro-

totype system to support our classification and demonstrate

a scalable, central place of interaction. We have used CAR-

CS to classify all Nifty Assignments [7], all Peachy Parallel

assignments [5], and the materials used to teach ITCS 3145:

Parallel and Distributed Computing at UNC Charlotte [8].

We demonstrate how classifying pedagogical material can

help improve the adoption of PDC topics in early CS courses

by tackling three different problems: 1) help PDC experts

identify topics for which pedagogical material does not exist

and that should be developed,. 2) help instructors of early

CS courses to find materials that are similar to the ones they

use but that also cover PDC topics, and, 3) help instructors

to check the topics that their course currently covers and the

ones it does not cover (and maybe should or could).

II. RELATED WORK

A. Learning Material Repositories

Nifty Assignments: The Nifty assignments reposi-

tory [7] is a set of assignments that have been collected since

1999 (over 100 assignments) through an annual competition,

as part of the ACM SIGCSE conference. Selected assign-

ments are presented at the conference and archived. The

selection is primarily based on engagement, adoptability and

scalability, and usually targeted at early courses (CS0, CS1,

CS2). Nifty assignments now include metadata (topics, dif-

ficulty, strengths/weaknesses, dependencies, variants). The

Nifty assignments are used as part of the initial assignment

set by our CAR-CS system, as they represent a classical

(non-PDC) learning materials for early CS courses.

Peachy Parallel Assignments: The Peachy Parallel

Assignments [5] are a recent effort of the EduPar and

EduHPC [9] workshops to publicize well designed, exciting,

and interesting assignments that include some parallel and

distributed computing aspects. Peachy assignments focus

on adoptability and have been succesfully used in a real

classroom. The assignments are peer reviewed and published

and presented at EduPar and EduHPC; so far 11 Peachy Par-

allel Assignments have been presented. The Peachy Parallel

Assignments are used as part of the initial set by our CAR-

CS system as a representative set of what could be gathered

from the PDC educational community.

EngageCSEdu: EngageCSEdu [10], [11] is an NCWIT

sponsored repository that provides introductory CS course

materials, primarily engaging assignments targeted at CS0,

CS1, and CS2. The assignments are categorized by engage-

ment practices to improve student inclusiveness, confidence

and broadening participation in computing. The repository

has over 800 assignments with a competition for excel-

lence [12] and the assignments submitted are subject to an

editorial process with peer review.

Model AI Assignments: Model AI assignments repos-

itory [13] is a repository patterned after Nifty assignments

(same metadata) for motivating and growing students, ed-

ucators and practitioners in AI. Assignments submitted for

inclusion are peer reviewed and the ones that are accepted

are presented at the Educational Advances in AI conference.

There are about 40 assignments, going back to 2011.

Data Repositories: The CORGIS data repository [14],

[15] is a large collection of tools, datasets and resources

that can be used by educators as part of their programming

assignments. The datasets range across a large number of

disciplines and have been used in introductory courses, such

as Computational Thinking [16]. Using real-world datasets

can be highly engaging in introductory courses. Real-world

applications and dataset have been successfully integrated

in Data Structures courses [17], [18]. CAR-CS includes the

usage of datasets as a dimension of interest for assignments.

CS in Parallel: CS in Parallel [6] is a repository

containing a limited set of learning material that are used

to teach parallel computing in various classes. Overall, the

repository contains a few documents and organizes them

according to the courses they fit into. Classifying against

courses is difficult as courses are understood differently in

different institutions. We believe it is preferable to classify

against well accepted topics in order to enable the perco-

lation of the material in early CS courses by empowering

instructors to decide which topics fit best in their classes.

Other Repositories: Other repositories include those

surveyed by Decker et al. [19] that also include learning

materials for high school teachers, and detail their barrier to

entry/participation [20].

Overall, existing repositories tend to only consider early

computing education by focusing on courses such as CS0,

CS1, and CS2; do not provide classification against well

accepted content ontologies; and tend to focus on assign-

ments rather than class materials. In comparison, the CAR-

CS system aims to include a wide range of computer

science topics and to provide a more expansive, fine-grained

classification system that allows for greater expressiveness

in assignment search queries.

B. Curriculum Guidelines/Standards

ACM regularly updates computing curriculum guidelines

and the latest Computer Science curriculum is from 2013 [2],

jointly sponsored by ACM and the IEEE Computer Society

(we will denote this guideline CS13). The CS13 guide-

lines specify a ‘redefined body of knowledge, a result of

rethinking the essentials necessary for a Computer Science

curriculum’. The guidelines also provide numerous exem-

plars of actual courses and programs that can be adopted by

CS departments. In short, the guidelines divide the body of

knowledge into a set of knowledge areas; knowledge areas



are further divided into into knowledge units which contain

topics and learning outcomes. Learning outcomes are classi-

fied into three levels, familiarity, usage and assessment. The

system we propose adopts the classification proposed by the

ACM CS13 curriculum guidelines as a general Computer

Science curriculum since it is widely accepted.

The 2012 NSF/IEEE-TCPP curriculum for Parallel Dis-

tributed Computing [1] (we will denote PDC12) is an effort

to accurately map the PDC topics that are necessary for all

students to know. It is divided in four areas: Algorithm, Ar-

chitecture, Programming, and Cross-Cutting and Advanced

topics. Contrary to the CS13 guidelines, the PDC12 cur-

riculum presents learning outcomes only as a description of

topics rather than as separate items. The PDC guidelines also

associate Bloom levels (Know, Comprehend, and Apply)

with the topics to clarify the minimum level of understanding

a student should have. While the CS13 curriculum groups

topics into a core-1 (must cover 100%), core-2 (should

cover 80% at least), and elective; the PDC curriculum only

exposes two levels: core and elective. The PDC curriculum

is currently under revision with a new version coming in

2019. We used the NSF/IEEE-TCPP PDC12 curriculum in

our CAR-CS systems as a domain specific curriculum.

Other sub-areas of computing have developed their own

standards, such as cyber security [21] and high school CS

curriculum [22], [23] which could also be used to provide

analyses similar to the one we conduct.

The work that comes closest to our proposed ideas and

system presented here is a syllabus repository project [24].

The authors of this work built a repository of syllabi of

computing courses by crawling the Internet and classified

them against the 2001 Computing Curriula standards [25].

They also proposed a syllabus maker and a comparison

tool. Our work differs in that it focuses on course content,

specifically on course materials, and ensures that the course

is closely tied to a given standard. Furthermore, CAR-CS

provides interactive tools to assess instructor materials and

gauge their coverage in the context of their curriculum, and

is highly extensible.

III. THE CAR-CS SYSTEM

A. Goals

Instructors are often looking for inspiration for new lec-

tures, problem sets, and exercises that align with comput-

ing education curriculum standards (e.g., ACM Curriculum

Guidelines, ABET standards) and that adequately address

the learning objectives of their courses. However, it is

difficult for educators to use traditional search tools to

find existing problems and learning materials that may be

useful in their own computer science courses. The lack of

centralization of materials certainly presents a problem, but

the most significant limitation is the lack of meaningful,

searchable features that capture what makes a material useful

for a given computer science course. Labeling by course

title, as is done for most existing collections of course

assignments and material [6], [7], is too simple a description.

Course content vary widely across institutions, for instance,

not everyone agrees on what CS1 should cover. One uni-

versity may define a CS1 course for a quarter system while

another creates a semester-long course. The choice of pro-

gramming language can result in different specifications (and

interesting twists!) in assignments in introductory courses.

In addition, instructors are often looking for new ways to

create assignments that promote student engagement and are

relevant to a diverse student population. Some instructors

may use a particular pedagogical approach, instructional

technique, or running theme for assignments. For example,

one instructor may focus on a media computation approach

while others may want to use social media datasets.

Our approach to developing the Compelling Assignment

Repository for Computer Science (CAR-CS) is intended to

address the need for more meaningful searches of com-

puter science course materials. CAR-CS pairs materials with

properly curated metadata to create a more fine-grained

structured representation of materials for search. CAR-CS

uses classic material descriptors, such as course-level, pro-

gramming language, and datasets. More importantly, CAR-

CS also relates materials to curriculum ontologies. As a

starting point, we build on the ACM Computer Science 2013

curriculum guidelines [2] and the NSF/IEEE-TCPP Parallel

and Distributed Computing 2012 curriculum [1] to extract

more meaningful, discipline-specific, fine-grained features

to describe each material. Specifically, each material will

be associated with the topics covered by the assignment

and the learning outcomes that the assignment fulfills. Note

that while we use these particular set of guidelines to

identify requirements for and to populate an initial version

of CAR-CS, other guidelines and standards (such as the ones

mentioned in Section II-B) could be integrated in the system.

Mapping material to curriculum guidelines and other

descriptive features opens up several opportunities for new

search functionalities. For instance, one can explicitly filter

against a group of features that is of interest to an instructor

looking for material, or look for similarities to an existing

material, and perhaps, to create variants of an existing

material. It enables one to ask questions pertinent to a

material or to a course, or to understand how a topic or

a learning outcome is typically covered.

While the CAR-CS system is currently a proof-of-concept

prototype, a fully fledged system will, in fact, be useful

to instructors, provided the issue of material curation is

addressed. We believe that a crowdsourced model can be

used to address the need for curation. With such an approach,

instructors can upload their own material in the system

and a number of editors can review the uploaded materi-

als. An editor has experience or credentials demonstrating

knowledge of the standards used by the system, and can

appropriately edit or fix classification issues with a submitted



material. Less knowledgeable users can suggest changes to

the metadata which must be verified by an editor.

B. Design

The CAR-CS prototype system is built as a web service

hosted on Heroku. Our current implementation uses the

ACM CS13 Curriculum Guidelines [2] to classify material

and the NSF/IEEE-TCPP PDC12 Curriculum Guidelines [1].

The data is modeled relationally and is stored in a post-

greSQL database. A Django web server provides a RESTful

API to the service and serves webpages to provide the main

interaction with the service. Webpages are made dynamic by

the use of JavaScript, the system supports dynamic queries

thanks to the jQuery library that enables asynchronous

communication with the RESTful back end. Interactivity and

visualization are provided by the D3 JavaScript library [26].

In the database, each assignment is associated with a

title, authors, URL and description. The classifications are

usually hierarchical and therefore they are represented with

a key, the key of the parent, a string description, and type

(separating topics and learning outcomes). Tags, items in

the classification, dataset used, and authors are associated

with an assignment using a many-to-many relationship.

The PDC12 and CS13 classifications are included in the

system. Note that the ACM CS13 classification is completely

hierarchical while there are “cross-cutting” topics in the

PDC12 topic. However these topics in PDC12 are actually

listed as a separate category and organized hierarchically.

The model could be extended if the classifications were

DAGs instead of trees.

The system has been seeded using the Nifty assign-

ments [7] which serve as a set of non-PDC material.

We included all assignments from 2003 to 2018 and we

excluded assignments for which links were broken. The

authors served as both contributors and editors and entered

about 65 Nifty assignments. We have also included all 11

Peachy Assignments [5]. And we have entered all of the

learning materials from the class ITCS 3145: Parallel and

Distributed Computing taught at UNC Charlotte [8]. The

materials of class consist of lecture slides and scaffolded

assignments on parallel algorithms to be implemented on

shared memory systems (pthreads, OpenMP) and distributed

memory systems (MPI and MapReduce-MPI [27]).

IV. USE CASES

A. Entering new pedagogical material

The simplest task that one would want to perform on the

CAR-CS system is to add a new pedagogical material. This

process is relatively simple. A form guides the user to filling

out basic information (title, authors, short description, URL,

etc.). This information is used to build most of the meta data

of the material, as seen in Figure 1a.

The mapping of a material to a classification ontology is

done using a tree list which can be seen in Figure 1b. Nodes

(a) Pedagogical Material Metadata

(b) Editing Classification

Figure 1: Adding and Classifying Materials. (Online at https:

//cs-materials.herokuapp.com/assignments)

of the tree can be selected to indicate that the particular topic

is covered by the material. The mappings that are selected

can be viewed at the bottom of the material description.

Entries can be searched for by entering a word or phrase

that becomes highlighted in the classification.

We classified about 65 Nifty assignments, all 11 Peachy

assignments, and all the materials from the class, ITCS

3145:Parallel and Distributed Computing, taught at UNC

Charlotte [8]. That class is composed of 12 slide decks and

9 assignments. Inputting (including classifying) all the ma-

terial took the instructor of that class (one of the authors, Dr.

Saule) about a day of work, with each item taking between

15-25 minutes to input and classify. The classification of

these three classes of material can be seen in Figure 2.

Keying the meta data is straightforward and fast, but clas-

sification is more involved, because of the size of the ontolo-

gies (the CS13 classification contains about 3000 entries).

One could quickly make some selection but most likely

doing so would miss relevant entries. For instance, in CS13,



parallelism related topics appear in three different places:

System Fundamental, Computational Science::Processing,

and in Parallel and Distributed Computing. Going quickly

through the classification would most likely get a poor

classification of the material.

In PDC12, some odd placement also happens; for in-

stance, Amdhal’s law (and related topics) falls under

Programming::Performance Issue::Data. Algorithm::Model

based notions::Parallel and Distributed Models and Com-

plexity::Notions from scheduling misses Critical Path. The

Map-Reduce programming model seems mostly missing.

(There are entries for BSP; which is oddly bundled with

Cilk; and Cloud Computing but these are not quite the

same). Overall, the PDC12 guideline was a first attempt at

classifying PDC topics, and certainly the 2019 edition of

PDC is expected to correct these oddities.

In both classifications, topics related to middleware (de-

sign and implementation) seem to be mostly missing. Run-

time systems appear under Programming Languages in

CS13, but refer to different things. Also on many topics,

both classifications seem to stay at a high level. While this

is appropriate for curriculum guidelines, it is not as precise

for classification of material as one would hope for. For

instance, CS13 has an entry for Task-Based Decompositions,

but recursive Cilk-style decomposition are different from

OpenMP depends-style decomposition.

Also it seems that it could be useful not only to say

that a material matches a topic, but at which level the

topic is matched. Taking an example, an early assignment

in ITCS 3145 was to implement a numerical integrator

using the rectangle method. Naturally this assignment checks

Computational Science::Numerical Analysis::Numerical dif-

ferentiation and integration. But the assignment only covers

integration and only requires the students to implement

a single method from a provided formula. A numerical

methods course would have a more comprehensive lecture

on numerical integration and would check the box in the

same way. Since both CS13 and PDC12 guidelines have

incorporated Bloom levels, it would make sense to classify

materials with Bloom levels as well.

Overall the process of classifying an assignment was

found to be enlightening, and puts in perspective what

the material does and does not do. While the classifi-

cation is time consuming, we believe that crowdsourcing

the classification (by making trusted users editors) would

lead to accurate classification. Also the time required to

classify materials decreases once the classifier understands

the ontologies. We envision that once enough materials are

classified, we would be able to leverage existing classifica-

tion to provide recommendation on topics commonly used

together.

B. Coverage of a Class

Using these classifications, one can easily investigate the

coverage of a class. Consider the PDC classification of the

class ITCS 3145 (shown in Figure 2f). Most of the classified

topics falls in the Programming category, followed by the

Algorithm category; the Architecture and Cross Cutting

and Advanced categories are mostly left untouched. This

is expected since the class focuses on programming and

achieving speedup using shared and distributed memory

computing by taking a dependency graph and scheduling

approach rather than a performance and hardware approach

to the class.

One can notice that topics related to distributed systems,

complexity theory, complex algorithms, and tooling are not

covered by the class. While the absence of most of these is

by design, the absence of tools from the class is an omission

of the instructor.

Looking at the coverage of ITCS 3145 in the CS13

curriculum (shown in Figure 2c) highlights that Parallel

and Distributed Computing is the most covered area. This is

expected for this course and the classification shows the pre-

viously reported gaps: parallel architecture and distributed

systems are mostly left uncovered.

Algorithm and Complexity is the second most covered

area by the class, which is consistent with the perspective

provided by the PDC classification. It comes from the

reliance on complexity notation, parallel task graph analysis,

and some classic algorithms used as examples.

The third area highlighted by the analysis is Compu-

tational Sciences. This comes from the usage of some

stencil based algorithms and numerical integration in a few

assignments and because Fundamental Parallel Computing

is an area of Computational Sciences::Processing.

Software Development Fundamental is the fourth area

highlighted. Indeed basic programming constructs are dis-

sected with a parallel twist and assignments are scaffolded

using unit tests which appears in that category. The other

partially covered areas from this course are expected: Oper-

ating Systems, Programming Languages, and Architecture.

The take home message of this analysis is the realization

that some topics could have been touched by this class, but

were not. We discussed that tools for parallel computing

were not covered by the class and that it was highlighted

by the PDC12 classification. But the mapping to the CS13

curriculum highlights non-PDC areas that are touched upon

as side notes by the class such as unit tests and numerical

integration. Some of the untouched areas like Human Com-

puter Interactions, Social Issues, Information Assurance and

Security, or Platform Based Development are not surprising.

But the absence of mapping to Graphics and Visualization

and Intelligent Systems reveals that the class could be made

more engaging by having some assignments or examples

derived from these areas.







ACKNOWLEDGMENTS

The authors would also like to thanks Nick Parlante for

his work on curating the Nifty assignments and David Bunde

for his work in curating the Peachy Parallel assignments.

This work is supported by grants from the National Sci-

ence Foundation (CCF-1652442, DUE-1245841, and DUE-

1726809) and by a summer undergraduate research fellow-

ship from the Charlotte Research Scholars Program.

REFERENCES

[1] NSF/IEEE-TCPP Curriculum Working Group, “NSF/IEEE-
TCPP curriculum initiative on parallel and distributed com-
puting : Core topics for undergraduates,” CDER, Tech. Rep.,
2012, available at http://www.cs.gsu.edu/∼tcpp/curriculum/
sites/default/files/NSF-TCPP-curriculum-version1.pdf.

[2] Joint Taskforce on ACM Curricula, Computer Science
Curricula 2013: Curriculum Guidelines for Undergraduate
Degree Programs in Computer Science. ACM/IEEE Com-
puter Society, 2013. [Online]. Available: https://www.acm.
org/binaries/content/assets/education/cs2013 web final.pdf

[3] S. Prasad, A. Gupta, A. Rosenberg, A. Sussman, and
C. Weems, Eds., Topics in Parallel and Distributed Com-
puting: Introducing Concurrency in Undergraduate Courses.
Morgan Kaufmann,, 2015.

[4] ——, Topics in Parallel and Distributed Computing: Enhanc-
ing the Undergraduate Curriculum: Performance, Concur-
rency, and Programming on Modern Platforms. Springer
International Publishing, 2018.

[5] “Peachy parallel assignments,”
https://grid.cs.gsu.edu/ tcpp/curriculum/?q=peachy.

[6] R. Brown, L. Shoop, and J. Adams, “CS in parallel,”
https://csinparallel.org/.

[7] N. Parlante, “Nifty assignments,” 2018. [Online]. Available:
http://nifty.stanford.edu/

[8] E. Saule, “Experiences on teaching parallel and distributed
computing for undergraduates,” in Proc of IPDPSW 2018,
May 2018.

[9] E. Ayguade, LlucAlvarez, F. Banchelli, M. Burtscher,
A. Gonzalez-Escribano, J. Gutierrez, D. A. Joiner, D. Kaeluu,
F. Previlon, E. Rodriguez-Gutiez, and D. P. Bunde, “Peachy
parallel assignments (EduHPC 2018),” in Proc. of EduHPC,
2018.

[10] A. Monge, B. A. Quinn, and C. L. Fadjo, “EngageCSEdu:
CS1 and CS2 materials for engaging and retaining under-
graduate CS students,” in Proc. of ACM SIGCSE, 2015, pp.
271–271.

[11] NCWIT, 2018. [Online]. Available: https://www.
engage-csedu.org/

[12] G. Sprint and A. O’Fallon, “Engaging programming assign-
ments to recruit and retain CS0 students: (abstract only),” in
Proc. of ACM SIGCSE, 2018, pp. 1093–1093.

[13] AAAI, “Model AI assignments,” 2018. [Online]. Available:
http://modelai.gettysburg.edu/

[14] A. C. Bart, “CORGIS Datasets Project: The Collection
of Really Great, Interesting, Situated Datasets,” 2016,
https://think.cs.vt.edu/corgis/.

[15] A. Bart, E. Tilevich, S. Hall, T. Allevato, and C. Shaffer,
“Transforming introductory computer science projects via
real-time web data,” in Proc. of ACM SIGCSE, 2014, pp.
289–294.

[16] A. C. Bart, R. Whitcomb, D. Kafura, C. A. Shaffer, and
E. Tilevich, “Computing with CORGIS: Diverse, real-world
datasets for introductory computing,” ACM Inroads, vol. 8,
no. 2, pp. 66–72, Mar. 2017.

[17] D. Burlinson, M. Mehedint, C. Grafer, K. Subramanian,
J. Payton, P. Goolkasian, M. Youngblood, and R. Kosara,
“BRIDGES: A system to enable creation of engaging data
structures assignments with real-world data and visualiza-
tions,” in Proc. of ACM SIGCSE 2016, 2016, pp. 18–23.

[18] K. Subramanian, “BRIDGES (Bridging Real-world Infras-
tructure Designed to Goal-align, Engage, and Stimulate),,”
2018. [Online]. Available: http://bridgesuncc.github.io/

[19] A. Decker, M. M. McGill, L. A. DeLyser, B. Quinn, M. Berry,
K. Haynie, and T. McKlin, “Repositories you shouldn’t be
living without,” in Proc. of ACM SIGCSE, 2018, pp. 920–
921.

[20] M. Leake and C. M. Lewis, “Recommendations for designing
CS resource sharing sites for all teachers,” in Proc. of ACM
SIGCSE, ser. SIGCSE ’17, 2017, pp. 357–362.

[21] N. S. Agency, “Centers of academic excellence in cyber
defense (CAE-CD) – 2019 knowledge units,” NSA, Tech.
Rep., 2018.

[22] C. Board, Computer Science A: Course De-
scription. College Board AP, Fall 2014. [On-
line]. Available: https://apcentral.collegeboard.org/pdf/
ap-computer-science-a-course-description.pdf

[23] ——, AP Computer Science Principles, Including the Cur-
riculum Framework. College Board, Fall 2017.

[24] M. Tungare, X. Yu, W. Cameron, G. Teng, M. A. Pérez-
Quiñones, L. Cassel, W. Fan, and E. A. Fox, “Towards a
syllabus repository for computer science courses,” in Proc. of
ACM SIGCSE, ser. SIGCSE ’07, 2007, pp. 55–59.

[25] Joint Taskforce on Computing Curricula, Com-
puting Curricula 2001 Computer Science.
ACM/IEEE Computer Society, 2001. [Online]. Avail-
able: http://www.acm.org/binaries/content/assets/education/
curricula-recommendations/cc2001.pdf

[26] D3: Data Driven Documents, 2018. [Online]. Available:
https://d3js.org/

[27] S. J. Plimpton and K. D. Devine, “MapReduce in MPI for
large-scale graph algorithms,” Parallel Computing (ParCo),
vol. 37, no. 9, pp. 610–632, Sep. 2011.


